Abell 399-401 radio bridge study
Using wide-field facet calibration

Jurjen de Jong

Collaborators:
R. van Weeren, A. Botteon, R. Oonk, G. Brunetti, T. Shimwell, R. Cassano,
H. Röttgering, C. Tasse

SPARCS 2022
Galaxy cluster merger
Galaxy cluster merger

Copyright: Abell 1758: ESA/XMM-Newton (X-rays); GMRT/TGSS (radio); 1E2215: NASA/Chandra (X-rays), GMRT (radio); CIZA J2242: ESA/XMM-Newton (X-rays); ASTRON/WSRT (radio)
Radio bridge: Abell 399-401

- Filament between pre-merging clusters
- Magnetic fields and cosmic rays
- Diffuse synchrotron emission
- Abell 399-401: ~3 Mpc at z=0.072

Govoni et al. 2019
Radio bridge origin

- Lifetime electrons vs. bridge size → sub-Mpc vs. ~Mpc scale
- In-situ re-acceleration of fossil electrons
- Particle injection by shocks, AGN, Galactic winds, ...
Radio bridge origin

- Lifetime electrons vs. bridge size → sub-Mpc vs. ~Mpc scale
- In-situ re-acceleration of fossil electrons
- Particle injection by shocks, AGN, Galactic winds, ...

<table>
<thead>
<tr>
<th></th>
<th>Fermi-I (weak shocks)</th>
<th>Fermi-II (turbulence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio distribution</td>
<td>Substructure</td>
<td>Smooth/volume-filling</td>
</tr>
<tr>
<td>Radio/X-ray correlation</td>
<td>Weak</td>
<td>Strong</td>
</tr>
</tbody>
</table>

(Govoni et al. 2019) (Brunetti et al. 2020)
Open questions

1) Origin of cosmic rays in the radio bridge?

2) What is the main (re-)acceleration mechanism in the radio bridge?
Open questions

1) Origin of cosmic rays in the radio bridge?

2) What is the main (re-)acceleration mechanism in the radio bridge?

Problem: Radio bridges are diffuse
LOFAR Data

- Abell 399-401
- 6x8-hour LOFAR observations
- HBA [120-168 MHz]
- Dutch stations
Calibration

<table>
<thead>
<tr>
<th>Issues</th>
<th>Solutions</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright sources</td>
<td>Direction-dependent recalibration</td>
<td>N=1</td>
</tr>
<tr>
<td></td>
<td>(van Weeren et al. 2021)</td>
<td></td>
</tr>
</tbody>
</table>
Calibration

<table>
<thead>
<tr>
<th>Issues</th>
<th>Solutions</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright sources</td>
<td>Direction-dependent recalibration</td>
<td>N=1</td>
</tr>
<tr>
<td></td>
<td>(van Weeren et al. 2021)</td>
<td></td>
</tr>
<tr>
<td>Large object</td>
<td>Multiple recalibrations</td>
<td>N>1</td>
</tr>
<tr>
<td></td>
<td>(de Jong et al. 2022 accepted)</td>
<td></td>
</tr>
</tbody>
</table>
Results

SPARCS 2022
Recalibration vs. Standard (DDF)

😊 Similar sensitivity
Recalibration vs. Standard (DDF)

😊 Similar sensitivity

😁 Dynamic range improvement factor ~1.6
Recalibration vs. Standard (DDF)

😊 Similar sensitivity

😃 Dynamic range improvement factor ~1.6

😕 Recalibration costs 16500 extra CPU core hours (expensive!)
Recalibration vs. Standard (DDF)

😊 Similar sensitivity

😁 Dynamic range improvement factor ~1.6

😔 Recalibration costs 16500 extra CPU core hours (expensive!)
Radio/X-ray trend

A399
A401

LOFAR

XMM-Newton

$log(I_R) = a \log(I_X) + b$

Best fit
2σ
Correlation

$log(I_R)$ (Jy/arcsec²)
$log(I_X)$ (counts/s/arcsec²)
Results

1) Fossil plasma
Results

1) Fossil plasma

2) Trend between radio and X-ray
Results

1) Fossil plasma

2) Trend between radio and X-ray

3) Steep spectral index $\rightarrow \alpha > 1.5$

(Nunhoeke et al. 2021)
Results

1) Fossil plasma

2) Trend between radio and X-ray

3) Steep spectral index $\rightarrow \alpha > 1.5$

(Prepared by Brunetti et al. 2020)
Summary

Calibration:
1. Recalibration strategy improves calibration of diffuse structures.
2. Computationally expensive.

Science:
3. Radio bridge emission likely generated by Fermi-II re-acceleration of fossil plasma.
4. Fossil plasma might originate from past AGN activity.

J.M.G.H.J. de Jong et al. 2022 (accepted in A&A)
This publication is part of the project CORTEX (NWA.1160.18.316) of the research programme NWA-ORC which is (partly) financed by the Dutch Research Council (NWO). This work made use of the Dutch national e-infrastructure with the support of the SURF Cooperative using grant no. EINF-1287.
EXTRA SLIDES